A new test facility for efficient evaluation of MEMS contact materials
نویسندگان
چکیده
A novel test facility for the efficient evaluation of microelectromechanical system (MEMS) switches and the development of alternative contact materials is described. The facility utilizes the upper cantilever from commercial MEMS contact switches, and tests these against alternative bottom contact materials within a modified atomic force microscope (AFM). The test closely approximates the real switch, but can accommodate a wider range of test conditions and contact materials. The facility allows alternative contact materials to be easily and quickly incorporated, and therefore evaluated by measuring the number of cycles to failure. The evolution of the wear surfaces of the switch contact materials under test can also be easily examined. In order to demonstrate the facility, the evolution of the contact resistance and wear of a commercial RF MEMS cantilever with Au contacts was monitored under accelerated test conditions, comparing the behavior of Au bottom contacts to an alternative Au–Ni alloy contact material. The Au–Ni (20 at.%) alloy displayed reduced wear rates and improved switch cycle lifetimes compared to pure Au, while retaining acceptable values of contact resistance. (Some figures in this article are in colour only in the electronic version)
منابع مشابه
Comparison of Au and Au–Ni Alloys as Contact Materials for MEMS Switches
This paper reports on a comparison of gold and gold–nickel alloys as contact materials for microelectromechanical systems (MEMS) switches. Pure gold is commonly used as the contact material in low-force metal-contact MEMS switches. The top two failure mechanisms of these switches are wear and stiction, which may be related to the material softness and the relatively high surface adhesion, respe...
متن کاملPreliminary results on multi-body dynamic simulation of a new test rig for wheel-rail contact
The ability to perform rolling contact fatigue (RCF) experiments in wheel–rail material is provided by a new small–scale test rig, manifesting the actual dynamic behaviour of the railway system. In this paper, a multi-body dynamics (MBD) model is proposed, simulating the vibration behaviour of the prescribed rig. The new testing facility is modelled using a three-dimensional model of the vehicl...
متن کاملAn Efficient Hybrid Metaheuristic for Capacitated p-Median Problem
Capacitated p-median problem (CPMP) is a well-known facility-location problem, in which p capacitated facility points are selected to satisfy n demand points in such a way that the total assigned demand to each facility does not exceed its capacity. Minimizing the total sum of distances between each demand point and its nearest facility point is the objective of the problem. Developing an effic...
متن کاملMicro-cantilevered MEMS Biosensor for Detection of Malaria Protozoan Parasites
In this paper, the presented work aims to provide a designed model based on Finite element method for detection of Malaria protozoan parasites. Micro-cantilevers are next generation highly efficient biosensors for detection and prevention of any disease. Here, an E-shaped model for micro cantilevered biosensor is designed using COMSOL Multiphysics specifically for detection of Malaria. Microcan...
متن کاملValidation of bending test by nanoindentation for micro- contact analysis of MEMS switches
Research on contact characterization for microelectromechanical system (MEMS) switches has been driven by the necessity to reach a high-reliability level for micro-switch applications. One of the main failures observed during cycling of the devices is the increase of the electrical contact resistance. The key issue is the electromechanical behaviour of the materials used at the contact interfac...
متن کامل